1
0
Files
avidemux_shaders/gopro_8:7/unfish_gopro_8:7.glsl
2025-09-23 05:46:21 +02:00

126 lines
4.1 KiB
GLSL

#version 130
// Fisheye removal for GoPro 11+, 8:7 ratio, without hypersmooth
// Copyright (C) 2025 Jean-Baptiste Berlioz
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#extension GL_ARB_texture_rectangle: enable
#define non_linear_decoding
#define rotate_180
//#define debug_borders
#undef highp // defined by Qt-OpenGl
precision highp float;
// uniforms
uniform sampler2DRect myTextureY;
uniform sampler2DRect myTextureU;
uniform sampler2DRect myTextureV;
uniform vec2 myResolution;
uniform float pts;
// parameters
const vec2 sensor_size = vec2(5.949440, 5.205760);
const float equidistant_focal_length = 2.970000;
const float rectilinear_focal_length = 2.167601;
// constants
const int subsampling = 4;
const vec2 subsampling_step = vec2(1.0 / float(subsampling));
const vec2 subsampling_start = subsampling_step * 0.5 - vec2(0.5);
const float subsampling_scale = 1.0 / float(subsampling * subsampling);
// variables
vec2 texture_center;
vec2 texture_to_sensor;
vec2 sensor_to_texture;
void initialize() {
texture_center = myResolution * 0.5;
texture_to_sensor = sensor_size / myResolution;
#ifdef rotate_180
texture_to_sensor *= -1.0;
#endif
sensor_to_texture = myResolution / sensor_size;
}
vec2 equidistant_to_rectilinear(const in vec2 coord) {
float rectilinear_radius = length(coord);
float rectilinear_angle = atan(rectilinear_radius / rectilinear_focal_length);
float equidistant_radius = rectilinear_angle * equidistant_focal_length;
return coord * (equidistant_radius / rectilinear_radius);
}
vec3 sample_texture(const in vec2 coord) {
vec2 rectilinear = equidistant_to_rectilinear((coord - texture_center) * texture_to_sensor);
vec2 y_coord = texture_center + rectilinear * sensor_to_texture;
#ifdef debug_borders
if (y_coord.x < 0.0 || y_coord.y < 0.0 || y_coord.x > myResolution.x || y_coord.y > myResolution.y) {
return vec3(16.0 / 255.0, 0.5, 0.5);
}
#endif
vec2 uv_coord = y_coord * 0.5;
return vec3(
texture2DRect(myTextureY, y_coord).x,
texture2DRect(myTextureU, uv_coord).x,
texture2DRect(myTextureV, uv_coord).x);
}
#ifdef non_linear_decoding
// https://en.wikipedia.org/wiki/Rec._709
#define y_min ( 16.0 / 255.0)
#define y_max (235.0 / 255.0)
#define uv_min ( 16.0 / 255.0)
#define uv_max (240.0 / 255.0)
#define y_range (y_max - y_min)
#define uv_range (uv_max - uv_min)
const vec3 yuv_min = vec3(y_min, uv_min, uv_min);
const vec3 yuv_range = vec3(y_range, uv_range, uv_range);
const vec3 yuv_center = vec3(0.0, 0.5, 0.5);
vec3 decode_pixel(const in vec3 pixel) {
vec3 color = (pixel - yuv_min) / yuv_range - yuv_center;
float l = (color.x < 0.081) ? (color.x / 4.5) : pow((color.x + 0.099) / 1.099, 1.0 / 0.45);
return vec3(l, color.yz);
}
vec3 encode_pixel(const in vec3 color) {
float y = (color.x < 0.018) ? (color.x * 4.5) : (pow(color.x, 0.45) * 1.099 - 0.099);
return (vec3(y, color.yz) + yuv_center) * yuv_range + yuv_min;
}
#else
#define decode_pixel(_color) _color
#define encode_pixel(_color) _color
#endif // non_linear_decoding
void main() {
initialize();
vec2 coord = gl_TexCoord[0].xy;
vec3 color = vec3(0.0);
for (int y = 0; y < subsampling; y++) {
for (int x = 0; x < subsampling; x++) {
vec2 offset = subsampling_start + subsampling_step * vec2(x, y);
color += decode_pixel(sample_texture(coord + offset));
}
}
gl_FragColor = vec4(encode_pixel(color * subsampling_scale), 1.0);
}