1
0

Compare commits

...

4 Commits

Author SHA1 Message Date
d7f0cb427d version, precison and rotate 2025-09-18 07:37:25 +02:00
95175afb5d frame widening maths, cleanup 2025-09-18 06:08:05 +02:00
1385b3e6f3 pixel scale for frame widening 2025-09-17 20:59:34 +02:00
e6c417f0f6 new method based on sensor dimensions and focal length 2025-09-17 05:58:41 +02:00
3 changed files with 156 additions and 67 deletions

View File

@ -1,36 +0,0 @@
# RozK
# Computes fisheye removal parameters for GoPro 11+, 8:7 ratio, without hypersmooth,
# keeping the vertical FOV and widening the frame to preserve the diagonal FOV
# https://www.bobatkins.com/photography/technical/field_of_view.html
# https://community.gopro.com/s/article/HERO11-Black-Mini-Digital-Lenses-FOV-Information?language=fr
import math
frame_width = 8
frame_height = 7
input_ratio = frame_width / frame_height
input_vertical_fov = 108.0
input_diagonal_fov = 156.0
input_vertical_length = math.radians(input_vertical_fov * 0.5)
input_diagonal_length = math.radians(input_diagonal_fov * 0.5)
output_horizontal_length = math.sqrt((input_diagonal_length ** 2) / (input_vertical_length ** 2))
output_diagonal_length = math.hypot(output_horizontal_length, input_vertical_length)
output_diagonal_fov = math.degrees(math.atan(output_diagonal_length)) * 2.0
output_ratio = 1.0 / (output_horizontal_length / input_vertical_length)
print("Output FOV = %f" % output_diagonal_fov)
print("Output Ratio = %f" % output_ratio)
print("= Resolutions =====================")
def width_rounded_8(height):
width = int(round(height * input_ratio))
return ((width + 4) // 8) * 8
print("HD = %i x 720" % width_rounded_8(720))
print("Full HD = %i x 1080" % width_rounded_8(1080))
print("4K = %i x 2160" % width_rounded_8(2160))

View File

@ -1,12 +1,14 @@
#version 130
// RozK
// Fisheye removal for GoPro 11+, 8:7 ratio, without hypersmooth
// Adapted from https://github.com/duducosmos/defisheye
// itself based on http://www.fmwconcepts.com/imagemagick/defisheye/index.php
#extension GL_ARB_texture_rectangle: enable
// TODO: investigate
// precision highp float;
#undef highp // defined by Qt-OpenGl
#define rotate_180
//#define debug_borders
precision highp float;
// uniforms
uniform sampler2DRect myTextureY;
@ -16,25 +18,50 @@ uniform vec2 myResolution;
uniform float pts;
// parameters
const float input_fov = 156.0;
const float output_fov = 124.45;
const vec2 pixel_scale = vec2(0.652485, 1.0);
const int subsampling = 4;
const vec2 sensor_size = vec2(5.949440, 5.205760);
const vec2 pixel_scale = vec2(0.871558, 1.0);
const float equidistant_focal_length = 2.920000;
const float rectilinear_focal_length = 2.102263;
// subsampling constants
const float substep = 1.0 / float(subsampling);
const float substart = substep * 0.5 - 0.5;
const float subscale = 1.0 / float(subsampling * subsampling);
// constants
const int subsampling = 4;
const vec2 subsampling_step = vec2(1.0 / float(subsampling));
const vec2 subsampling_start = subsampling_step * 0.5 - vec2(0.5);
const float subsampling_scale = 1.0 / float(subsampling * subsampling);
// variables
vec2 center;
float diameter;
float input_len;
float inv_output_len;
vec2 texture_center;
vec2 texture_to_sensor;
vec2 sensor_to_texture;
void initialize() {
texture_center = myResolution * 0.5;
texture_to_sensor = (sensor_size / myResolution) * pixel_scale;
#ifdef rotate_180
texture_to_sensor *= -1.0;
#endif
sensor_to_texture = (myResolution / sensor_size);
}
vec2 unfish_coord(const in vec2 coord) {
float rectilinear_radius = length(coord);
float rectilinear_angle = atan(rectilinear_radius / rectilinear_focal_length);
float equidistant_radius = rectilinear_angle * equidistant_focal_length;
return coord * (equidistant_radius / rectilinear_radius);
}
vec4 unfish_pixel(const in vec2 coord) {
vec2 unfished = unfish_coord((coord - texture_center) * texture_to_sensor);
vec2 y_coord = texture_center + unfished * sensor_to_texture;
// y_coord.y = coord.y;
#ifdef debug_borders
if (y_coord.x < 0.0 || y_coord.y < 0.0 || y_coord.x > myResolution.x || y_coord.y > myResolution.y) {
return vec4(1.0);
}
#endif
vec4 unfish(const in vec2 coord) {
float len = max(0.001, length(coord));
vec2 y_coord = center + coord * ((input_len / len) * atan(len * inv_output_len));
vec2 uv_coord = y_coord * 0.5;
return vec4(
texture2DRect(myTextureY, y_coord).r,
@ -45,21 +72,17 @@ vec4 unfish(const in vec2 coord) {
}
void main() {
center = myResolution * 0.5;
diameter = length(myResolution);
input_len = diameter / radians(input_fov);
inv_output_len = (2.0 * tan(radians(output_fov * 0.5))) / diameter;
initialize();
vec2 coord = gl_TexCoord[0].xy - center;
vec4 pixel = vec4(0.0, 0.0, 0.0, 0.0);
vec2 coord = gl_TexCoord[0].xy;
vec4 pixel = vec4(0.0);
float x, y = substart;
for (int column = 0; column < subsampling; column++, y += substep) {
x = substart;
for (int row = 0; row < subsampling; row++, x += substep) {
pixel += unfish((coord + vec2(x, y)) * pixel_scale);
for (int y = 0; y < subsampling; y++) {
for (int x = 0; x < subsampling; x++) {
vec2 offset = subsampling_start + subsampling_step * vec2(x, y);
pixel += unfish_pixel(coord + offset);
}
}
gl_FragColor = pixel * subscale;
gl_FragColor = pixel * subsampling_scale;
}

View File

@ -0,0 +1,102 @@
# RozK
import math
print("\n--- physical sensor ---\n")
# https://www.sony-semicon.com/files/62/pdf/p-13_IMX677-AAPH5-J_Flyer.pdf
sensor_array_horizontal = 5700 # p
sensor_array_vertical = 5160 # p
sensor_array_diagonal = math.hypot(sensor_array_horizontal, sensor_array_vertical)
sensor_pixel_size = 1.12 * 0.001 # mm
sensor_size_horizontal = sensor_array_horizontal * sensor_pixel_size
sensor_size_vertical = sensor_array_vertical * sensor_pixel_size
sensor_size_diagonal = math.hypot(sensor_size_horizontal, sensor_size_vertical)
print("sensor size : horizontal = %7.3f, vertical = %7.3f, diagonal = %7.3f (mm)" % (
sensor_size_horizontal,
sensor_size_vertical,
sensor_size_diagonal))
# https://community.gopro.com/s/article/HERO11-Black-Video-Settings-And-Resolutions
gopro_array_horizontal = 5312 # p
gopro_array_vertical = 4648 # p
gopro_array_diagonal = math.hypot(gopro_array_horizontal, gopro_array_vertical)
gopro_size_horizontal = (gopro_array_horizontal / sensor_array_horizontal) * sensor_size_horizontal
gopro_size_vertical = (gopro_array_vertical / sensor_array_vertical) * sensor_size_vertical
gopro_size_diagonal = (gopro_array_diagonal / sensor_array_diagonal) * sensor_size_diagonal
print("gopro size : horizontal = %7.3f, vertical = %7.3f, diagonal = %7.3f (mm)" % (
gopro_size_horizontal,
gopro_size_vertical,
gopro_size_diagonal))
# https://thinglabs.io/gopro-focal-radius-guide
gopro_focal_length = 2.92 # mm
gopro_radius_horizontal = gopro_size_horizontal * 0.5
gopro_radius_vertical = gopro_size_vertical * 0.5
gopro_radius_diagonal = gopro_size_diagonal * 0.5
# https://en.wikipedia.org/wiki/Fisheye_lens
equidistant_angle = lambda radius: math.degrees(radius / gopro_focal_length)
gopro_fov_horizontal = 2.0 * equidistant_angle(gopro_radius_horizontal)
gopro_fov_vertical = 2.0 * equidistant_angle(gopro_radius_vertical)
gopro_fov_diagonal = 2.0 * equidistant_angle(gopro_radius_diagonal)
print("gopro fov : horizontal = %7.3f, vertical = %7.3f, diagonal = %7.3f (deg)" % (
gopro_fov_horizontal,
gopro_fov_vertical,
gopro_fov_diagonal))
print("\n--- rectilinear re-projection, preserving vertical fov ---\n")
rectilinear_focal_length = lambda radius: radius * math.tan(math.radians(90.0 - equidistant_angle(radius)))
rectilinear_focal_length_horizontal = rectilinear_focal_length(gopro_radius_horizontal)
rectilinear_focal_length_vertical = rectilinear_focal_length(gopro_radius_vertical)
rectilinear_focal_length_diagonal = rectilinear_focal_length(gopro_radius_diagonal)
print("linear focal: horizontal = %7.3f, vertical = %7.3f, diagonal = %7.3f (mm)" % (
rectilinear_focal_length_horizontal,
rectilinear_focal_length_vertical,
rectilinear_focal_length_diagonal))
rectilinear_radius = lambda angle, focal_length: focal_length * math.tan(math.radians(angle))
rectilinear_angle = lambda radius, focal_length: math.degrees(math.atan(radius / focal_length))
preserved_fov_horizontal = 2.0 * rectilinear_angle(gopro_radius_horizontal, rectilinear_focal_length_vertical)
preserved_fov_vertical = 2.0 * rectilinear_angle(gopro_radius_vertical, rectilinear_focal_length_vertical)
preserved_fov_diagonal = 2.0 * rectilinear_angle(gopro_radius_diagonal, rectilinear_focal_length_vertical)
print("linear fov : horizontal = %7.3f, vertical = %7.3f, diagonal = %7.3f (deg)" % (
preserved_fov_horizontal,
preserved_fov_vertical,
preserved_fov_diagonal))
print("\n--- shader parameters ---\n")
rectilinear_angle_horizontal = rectilinear_angle(gopro_radius_horizontal, rectilinear_focal_length_horizontal)
preserved_radius_horizontal = rectilinear_radius(rectilinear_angle_horizontal, rectilinear_focal_length_vertical)
pixel_scale = gopro_radius_horizontal / preserved_radius_horizontal
print("""// parameters
const vec2 sensor_size = vec2(%.6f, %.6f);
const vec2 pixel_scale = vec2(%.6f, 1.0);
const float equidistant_focal_length = %.6f;
const float rectilinear_focal_length = %.6f;
""" % (
gopro_size_horizontal, gopro_size_vertical,
pixel_scale,
gopro_focal_length,
rectilinear_focal_length_vertical)
)