new method based on sensor dimensions and focal length
This commit is contained in:
@ -1,14 +1,15 @@
|
|||||||
// RozK
|
// RozK
|
||||||
// Fisheye removal for GoPro 11+, 8:7 ratio, without hypersmooth
|
// Fisheye removal for GoPro 11+, 8:7 ratio, without hypersmooth
|
||||||
// Adapted from https://github.com/duducosmos/defisheye
|
|
||||||
// itself based on http://www.fmwconcepts.com/imagemagick/defisheye/index.php
|
|
||||||
|
|
||||||
#extension GL_ARB_texture_rectangle: enable
|
#extension GL_ARB_texture_rectangle: enable
|
||||||
|
|
||||||
// TODO: investigate
|
// TODO: investigate
|
||||||
// precision highp float;
|
// precision highp float;
|
||||||
|
|
||||||
|
// #define debug_borders
|
||||||
|
|
||||||
// uniforms
|
// uniforms
|
||||||
|
|
||||||
uniform sampler2DRect myTextureY;
|
uniform sampler2DRect myTextureY;
|
||||||
uniform sampler2DRect myTextureU;
|
uniform sampler2DRect myTextureU;
|
||||||
uniform sampler2DRect myTextureV;
|
uniform sampler2DRect myTextureV;
|
||||||
@ -16,25 +17,47 @@ uniform vec2 myResolution;
|
|||||||
uniform float pts;
|
uniform float pts;
|
||||||
|
|
||||||
// parameters
|
// parameters
|
||||||
const float input_fov = 156.0;
|
|
||||||
const float output_fov = 124.45;
|
const vec2 sensor_dimensions = vec2(5.949440, 5.205760);
|
||||||
const vec2 pixel_scale = vec2(0.652485, 1.0);
|
const float fisheye_focal_length = 2.92;
|
||||||
|
const float rectilinear_focal_length = 2.102263;
|
||||||
const int subsampling = 4;
|
const int subsampling = 4;
|
||||||
|
|
||||||
// subsampling constants
|
// constants
|
||||||
const float substep = 1.0 / float(subsampling);
|
|
||||||
const float substart = substep * 0.5 - 0.5;
|
const float subsampling_step = 1.0 / float(subsampling);
|
||||||
const float subscale = 1.0 / float(subsampling * subsampling);
|
const float subsampling_start = subsampling_step * 0.5 - 0.5;
|
||||||
|
const float subsampling_denominator = 1.0 / float(subsampling * subsampling);
|
||||||
|
|
||||||
// variables
|
// variables
|
||||||
vec2 center;
|
|
||||||
float diameter;
|
|
||||||
float input_len;
|
|
||||||
float inv_output_len;
|
|
||||||
|
|
||||||
vec4 unfish(const in vec2 coord) {
|
vec2 texture_center;
|
||||||
float len = max(0.001, length(coord));
|
vec2 texture_to_sensor;
|
||||||
vec2 y_coord = center + coord * ((input_len / len) * atan(len * inv_output_len));
|
vec2 sensor_to_texture;
|
||||||
|
|
||||||
|
void initialize() {
|
||||||
|
texture_center = myResolution * 0.5;
|
||||||
|
texture_to_sensor = (sensor_dimensions / myResolution);
|
||||||
|
sensor_to_texture = (myResolution / sensor_dimensions);
|
||||||
|
}
|
||||||
|
|
||||||
|
vec2 unfish_coord(const in vec2 coord) {
|
||||||
|
float rectilinear_distance = length(coord);
|
||||||
|
float rectilinear_angle = atan(rectilinear_distance / rectilinear_focal_length);
|
||||||
|
float fisheye_distance = rectilinear_angle * fisheye_focal_length;
|
||||||
|
return coord * (fisheye_distance / rectilinear_distance);
|
||||||
|
}
|
||||||
|
|
||||||
|
vec4 unfish_pixel(const in vec2 coord) {
|
||||||
|
vec2 unfished = unfish_coord((coord - texture_center) * texture_to_sensor);
|
||||||
|
vec2 y_coord = texture_center + unfished * sensor_to_texture;
|
||||||
|
|
||||||
|
#ifdef debug_borders
|
||||||
|
if (y_coord.x < 0.0 || y_coord.y < 0.0 || y_coord.x > myResolution.x || y_coord.y > myResolution.y) {
|
||||||
|
return vec4(1.0, 1.0, 1.0, 1.0);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
vec2 uv_coord = y_coord * 0.5;
|
vec2 uv_coord = y_coord * 0.5;
|
||||||
return vec4(
|
return vec4(
|
||||||
texture2DRect(myTextureY, y_coord).r,
|
texture2DRect(myTextureY, y_coord).r,
|
||||||
@ -45,21 +68,18 @@ vec4 unfish(const in vec2 coord) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void main() {
|
void main() {
|
||||||
center = myResolution * 0.5;
|
initialize();
|
||||||
diameter = length(myResolution);
|
|
||||||
input_len = diameter / radians(input_fov);
|
|
||||||
inv_output_len = (2.0 * tan(radians(output_fov * 0.5))) / diameter;
|
|
||||||
|
|
||||||
vec2 coord = gl_TexCoord[0].xy - center;
|
vec2 coord = gl_TexCoord[0].xy;
|
||||||
vec4 pixel = vec4(0.0, 0.0, 0.0, 0.0);
|
vec4 pixel = vec4(0.0, 0.0, 0.0, 0.0);
|
||||||
|
|
||||||
float x, y = substart;
|
float x, y = subsampling_start;
|
||||||
for (int column = 0; column < subsampling; column++, y += substep) {
|
for (int column = 0; column < subsampling; column++, y += subsampling_step) {
|
||||||
x = substart;
|
x = subsampling_start;
|
||||||
for (int row = 0; row < subsampling; row++, x += substep) {
|
for (int row = 0; row < subsampling; row++, x += subsampling_step) {
|
||||||
pixel += unfish((coord + vec2(x, y)) * pixel_scale);
|
pixel += unfish_pixel(coord + vec2(x, y));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
gl_FragColor = pixel * subscale;
|
gl_FragColor = pixel * subsampling_denominator;
|
||||||
}
|
}
|
||||||
|
|||||||
86
gopro_8:7/unfish_gopro_8:7.py
Normal file
86
gopro_8:7/unfish_gopro_8:7.py
Normal file
@ -0,0 +1,86 @@
|
|||||||
|
# RozK
|
||||||
|
|
||||||
|
import math
|
||||||
|
|
||||||
|
print("\n--- sensor size (millimeters) ---\n")
|
||||||
|
|
||||||
|
# https://www.sony-semicon.com/files/62/pdf/p-13_IMX677-AAPH5-J_Flyer.pdf
|
||||||
|
|
||||||
|
sensor_total_array_width = 5700 # p
|
||||||
|
sensor_total_array_height = 5160 # p
|
||||||
|
sensor_total_array_diagonal = math.hypot(sensor_total_array_width, sensor_total_array_height)
|
||||||
|
|
||||||
|
sensor_pixel_size = 1.12 * 0.001 # mm
|
||||||
|
|
||||||
|
sensor_total_width = sensor_total_array_width * sensor_pixel_size
|
||||||
|
sensor_total_height = sensor_total_array_height * sensor_pixel_size
|
||||||
|
sensor_total_diagonal = math.hypot(sensor_total_width, sensor_total_height)
|
||||||
|
|
||||||
|
# sensor_total_diagonal = 8.35 # mm
|
||||||
|
# sensor_total_width = sensor_total_diagonal * (sensor_total_array_width / sensor_total_array_diagonal)
|
||||||
|
# sensor_total_height = sensor_total_diagonal * (sensor_total_array_height / sensor_total_array_diagonal)
|
||||||
|
|
||||||
|
print("sensor total: width = %.6f, height = %.6f, diagonal = %.6f" % (
|
||||||
|
sensor_total_width,
|
||||||
|
sensor_total_height,
|
||||||
|
sensor_total_diagonal))
|
||||||
|
|
||||||
|
sensor_active_array_width = 5599 # p
|
||||||
|
sensor_active_array_height = 4927 # p
|
||||||
|
sensor_active_array_diagonal = math.hypot(sensor_active_array_width, sensor_active_array_height)
|
||||||
|
|
||||||
|
sensor_active_width = (sensor_active_array_width / sensor_total_array_width) * sensor_total_width
|
||||||
|
sensor_active_height = (sensor_active_array_height / sensor_total_array_height) * sensor_total_height
|
||||||
|
sensor_active_diagonal = (sensor_active_array_diagonal / sensor_total_array_diagonal) * sensor_total_diagonal
|
||||||
|
|
||||||
|
print("sensor active: width = %.6f, height = %.6f, diagonal = %.6f" % (
|
||||||
|
sensor_active_width,
|
||||||
|
sensor_active_height,
|
||||||
|
sensor_active_diagonal))
|
||||||
|
|
||||||
|
# https://community.gopro.com/s/article/HERO11-Black-Video-Settings-And-Resolutions
|
||||||
|
|
||||||
|
gopro_array_width = 5312 # p
|
||||||
|
gopro_array_height = 4648 # p
|
||||||
|
gopro_array_diagonal = math.hypot(gopro_array_width, gopro_array_height)
|
||||||
|
|
||||||
|
gopro_sensor_width = (gopro_array_width / sensor_total_array_width) * sensor_total_width
|
||||||
|
gopro_sensor_height = (gopro_array_height / sensor_total_array_height) * sensor_total_height
|
||||||
|
gopro_sensor_diagonal = (gopro_array_diagonal / sensor_total_array_diagonal) * sensor_total_diagonal
|
||||||
|
|
||||||
|
print("gopro active: width = %.6f, height = %.6f, diagonal = %.6f" % (
|
||||||
|
gopro_sensor_width,
|
||||||
|
gopro_sensor_height,
|
||||||
|
gopro_sensor_diagonal))
|
||||||
|
|
||||||
|
# https://thinglabs.io/gopro-focal-length-guide
|
||||||
|
|
||||||
|
gopro_focal_length = 2.92 # mm
|
||||||
|
|
||||||
|
print("\n--- fisheye field of view (degrees) ---\n")
|
||||||
|
|
||||||
|
# https://en.wikipedia.org/wiki/Fisheye_lens
|
||||||
|
|
||||||
|
equidistant_angle = lambda length: math.degrees(length / gopro_focal_length)
|
||||||
|
|
||||||
|
gopro_fov_width = 2.0 * equidistant_angle(gopro_sensor_width * 0.5)
|
||||||
|
gopro_fov_height = 2.0 * equidistant_angle(gopro_sensor_height * 0.5)
|
||||||
|
gopro_fov_diagonal = 2.0 * equidistant_angle(gopro_sensor_diagonal * 0.5)
|
||||||
|
|
||||||
|
print("gopro fov: width = %.6f, height = %.6f, diagonal = %.6f" % (
|
||||||
|
gopro_fov_width,
|
||||||
|
gopro_fov_height,
|
||||||
|
gopro_fov_diagonal))
|
||||||
|
|
||||||
|
print("\n--- rectilinear focal length (mm) ---\n")
|
||||||
|
|
||||||
|
rectilinear_focal_length = lambda length: length * math.tan(math.radians(90.0 - equidistant_angle(length)))
|
||||||
|
|
||||||
|
rectilinear_focal_length_width = rectilinear_focal_length(gopro_sensor_width * 0.5)
|
||||||
|
rectilinear_focal_length_height = rectilinear_focal_length(gopro_sensor_height * 0.5)
|
||||||
|
rectilinear_focal_length_diagonal = rectilinear_focal_length(gopro_sensor_diagonal * 0.5)
|
||||||
|
|
||||||
|
print("rectilinear focal length: width = %.6f, height = %.6f, diagonal = %.6f" % (
|
||||||
|
rectilinear_focal_length_width,
|
||||||
|
rectilinear_focal_length_height,
|
||||||
|
rectilinear_focal_length_diagonal))
|
||||||
Reference in New Issue
Block a user