#version 130 // Fisheye removal for GoPro 11+, 8:7 ratio, without hypersmooth // Copyright (C) 2025 Jean-Baptiste Berlioz // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as // published by the Free Software Foundation, either version 3 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . #extension GL_ARB_texture_rectangle: enable #define non_linear_decoding //#define rotate_180 //#define debug_borders #undef highp // defined by Qt-OpenGl precision highp float; // uniforms uniform sampler2DRect myTextureY; uniform sampler2DRect myTextureU; uniform sampler2DRect myTextureV; uniform vec2 myResolution; uniform float pts; // parameters const vec2 sensor_size = vec2(5.949440, 5.205760); const float equidistant_focal_length = 3.020000; const float rectilinear_focal_length = 2.232346; // constants const int subsampling = 4; const vec2 subsampling_step = vec2(1.0 / float(subsampling)); const vec2 subsampling_start = subsampling_step * 0.5 - vec2(0.5); const float subsampling_scale = 1.0 / float(subsampling * subsampling); // variables vec2 texture_center; vec2 texture_to_sensor; vec2 sensor_to_texture; void initialize() { texture_center = myResolution * 0.5; texture_to_sensor = sensor_size / myResolution; #ifdef rotate_180 texture_to_sensor *= -1.0; #endif sensor_to_texture = myResolution / sensor_size; } vec2 equidistant_to_rectilinear(const in vec2 coord) { float rectilinear_radius = length(coord); float rectilinear_angle = atan(rectilinear_radius / rectilinear_focal_length); float equidistant_radius = rectilinear_angle * equidistant_focal_length; return coord * (equidistant_radius / rectilinear_radius); } vec3 sample_texture(const in vec2 coord) { vec2 rectilinear = equidistant_to_rectilinear((coord - texture_center) * texture_to_sensor); vec2 y_coord = texture_center + rectilinear * sensor_to_texture; #ifdef debug_borders if (y_coord.x < 0.0 || y_coord.y < 0.0 || y_coord.x > myResolution.x || y_coord.y > myResolution.y) { return vec3(1.0); } #endif vec2 uv_coord = y_coord * 0.5; return vec3( texture2DRect(myTextureY, y_coord).x, texture2DRect(myTextureU, uv_coord).x, texture2DRect(myTextureV, uv_coord).x); } #ifdef non_linear_decoding // https://en.wikipedia.org/wiki/Rec._709 #define y_min ( 16.0 / 255.0) #define y_max (235.0 / 255.0) #define uv_min ( 16.0 / 255.0) #define uv_max (240.0 / 255.0) #define y_range (y_max - y_min) #define uv_range (uv_max - uv_min) const vec3 yuv_min = vec3(y_min, uv_min, uv_min); const vec3 yuv_range = vec3(y_range, uv_range, uv_range); const vec3 yuv_center = vec3(0.0, 0.5, 0.5); vec3 decode_pixel(const in vec3 pixel) { vec3 color = (pixel - yuv_min) / yuv_range - yuv_center; float l = (color.x < 0.081) ? (color.x / 4.5) : pow((color.x + 0.099) / 1.099, 1.0 / 0.45); return vec3(l, color.yz); } vec3 encode_pixel(const in vec3 color) { float y = (color.x < 0.018) ? (color.x * 4.5) : (pow(color.x, 0.45) * 1.099 - 0.099); return (vec3(y, color.yz) + yuv_center) * yuv_range + yuv_min; } #else #define decode_pixel(_color) _color #define encode_pixel(_color) _color #endif // non_linear_decoding void main() { initialize(); vec2 coord = gl_TexCoord[0].xy; vec3 color = vec3(0.0); for (int y = 0; y < subsampling; y++) { for (int x = 0; x < subsampling; x++) { vec2 offset = subsampling_start + subsampling_step * vec2(x, y); color += decode_pixel(sample_texture(coord + offset)); } } gl_FragColor = vec4(encode_pixel(color * subsampling_scale), 1.0); }