// Copyright (C) 2022 RozK // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . #version 320 es precision highp float; in vec3 v_position; uniform mat4 u_view_km; // world space -> view space, unit = km uniform vec3 u_light_direction; // view space (-direction_x, -direction_y, -direction_z) uniform vec3 u_light_color; uniform vec3 u_horizon_color; uniform vec3 u_sky_color; uniform vec3 u_sun_color; uniform float u_sea_phase; #define u_right u_view_km[0].xyz #define u_forward u_view_km[1].xyz #define u_up u_view_km[2].xyz #define u_origin u_view_km[3].xyz uniform highp sampler2DArray u_sea_polar_sampler; uniform highp sampler2D u_sea_detail_sampler; const float c_sea_radius = 637.1; const float c_sea_radius_sq = c_sea_radius * c_sea_radius; const float c_sky_radius = c_sea_radius + 10.0; const vec3 c_normal_scale = vec3(2.0, 2.0, 1.0); const vec3 c_normal_shift = vec3(-1.0, -1.0, 0.0); const float c_detail_scale = 2.0; layout(location = 0) out vec4 o_color; vec3 sky(in vec3 ray_direction) { float d = max(0.0, dot(ray_direction, u_light_direction)); return mix(u_horizon_color, u_sky_color, max(0.0, dot(ray_direction, u_up))) + u_sun_color * pow(d, 1000.0); } void main(void) { vec3 direction = normalize(v_position); vec3 earth_center = u_origin - u_up * c_sea_radius; float p_dist = dot(direction, earth_center); vec3 pc = earth_center - direction * p_dist; if (p_dist <= 0.0 || dot(pc, pc) >= c_sea_radius_sq) { // sky o_color = vec4(sky(direction), 1.0); } else { // sea vec3 sea_position = direction * (p_dist - sqrt(c_sea_radius_sq - dot(pc, pc))) - u_origin; vec3 sea_direction = normalize(sea_position); //TODO: vec2 float s = dot(u_forward, sea_direction); if (dot(u_right, sea_direction) > 0.0) { // [1.0 -1.0] -> [0.0 0.5] s = (1.0 - s) * 0.25; } else { // [-1.0 1.0] -> [0.5 1.0] -> [0.0 0.5] + 0.5 s = (1.0 + s) * 0.25 + 0.5; } float t = sqrt(length(sea_position)); //TODO: more accurate vec3 sea_polar1 = normalize( c_normal_shift + texture(u_sea_polar_sampler, vec3(s, t + u_sea_phase, 0.0)).xyz * c_normal_scale); vec3 sea_polar2 = normalize( c_normal_shift + texture(u_sea_polar_sampler, vec3(s, t - u_sea_phase, 1.0)).xyz * c_normal_scale); //TODO: vec2 s = (u_sea_phase + dot(sea_position, u_right)) * c_detail_scale; t = (u_sea_phase + dot(sea_position, u_forward)) * c_detail_scale; vec3 sea_detail = normalize(c_normal_shift + texture(u_sea_detail_sampler, vec2(s, t)).xyz * c_normal_scale); //TODO: better blending, with earth normal vec4 normal = u_view_km * vec4(normalize(sea_polar1 + sea_polar2 + sea_detail), 0.0); float d = max(0.0, dot(normal.xyz, u_light_direction)); s = pow(max(0.0, dot(normal.xyz, normalize(u_light_direction - direction))), 500.0) * step(0.0, d); o_color = vec4( u_sky_color * d + //TODO: sea color u_light_color * s + sky(reflect(direction, normal.xyz)), 1.0); } }