// Copyright (C) 2022 RozK
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see .
#include "../render.hpp"
#include "render_opengles.hpp"
#include "../display/display_glx.hpp"
#include "../cmp_memcpy.hpp"
#include
#include
#include
typedef void (*rk_DrawElementsInstancedBaseInstanceFunc)(rk_uint, rk_uint, rk_uint, const void *, rk_uint, rk_uint);
typedef void (*rk_MultiDrawElementsIndirectFunc)(rk_uint, rk_uint, const void *, rk_uint, rk_uint);
static rk_DrawElementsInstancedBaseInstanceFunc rk_DrawElementsInstancedBaseInstance = nullptr;
static rk_MultiDrawElementsIndirectFunc rk_MultiDrawElementsIndirect = nullptr;
static unsigned rk_nbuckets = 0;
static rk_bucket * rk_buckets = nullptr;
static void rk_gl_printf(char const * message) {
printf("[GL] %s\n", message);
}
static void rk_printf(char const * message) {
printf("[RK] %s\n", message);
}
static void rk_debug_message_callback(
GLenum source,
GLenum type,
GLuint id,
GLenum severity,
GLsizei length,
GLchar const * message,
void const * userParam) {
printf("[GL] (id=%d) %s\n", id, message);
}
void rk_render_initialize(
rk_bool debug) {
GLubyte const * const vendor = glGetString(GL_VENDOR);
GLubyte const * const renderer = glGetString(GL_RENDERER);
printf("[GL] vendor: %s, renderer: %s\n", vendor, renderer);
GLubyte const * const version = glGetString(GL_VERSION);
GLubyte const * const language = glGetString(GL_SHADING_LANGUAGE_VERSION);
printf("[GL] version: %s, language: %s\n", version, language);
if (debug) {
GLint max_texture_layers = 0;
glGetIntegerv(GL_MAX_ARRAY_TEXTURE_LAYERS, &max_texture_layers);
printf("[GL] Max texture layers: %d\n", max_texture_layers);
GLint max_vertex_attribs = 0;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &max_vertex_attribs);
printf("[GL] Max vertex attribs: %d\n", max_vertex_attribs);
GLint max_vertex_bindings = 0;
glGetIntegerv(GL_MAX_VERTEX_ATTRIB_BINDINGS, &max_vertex_bindings);
printf("[GL] Max vertex bindings: %d\n", max_vertex_bindings);
glDebugMessageCallback(rk_debug_message_callback, nullptr);
glEnable(GL_DEBUG_OUTPUT);
}
char const * const gl_exts = reinterpret_cast(glGetString(GL_EXTENSIONS));
// printf("[GL] %s\n", gl_exts);
rk_DrawElementsInstancedBaseInstance = reinterpret_cast(
rk_resolve_extension(gl_exts, "GL_EXT_base_instance", "DrawElementsInstancedBaseInstance"));
if (rk_DrawElementsInstancedBaseInstance) {
rk_gl_printf("Using extension GL_EXT_base_instance::DrawElementsInstancedBaseInstance.");
rk_MultiDrawElementsIndirect = reinterpret_cast(
rk_resolve_extension(gl_exts, "GL_EXT_multi_draw_indirect", "MultiDrawElementsIndirectEXT"));
if (rk_MultiDrawElementsIndirect) {
rk_gl_printf("Using extension GL_EXT_multi_draw_indirect::MultiDrawElementsIndirectEXT.");
}
}
glDisable(GL_BLEND);
glDisable(GL_DITHER);
glEnable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
glDisable(GL_STENCIL_TEST);
glEnable(GL_CULL_FACE);
glFrontFace(GL_CCW);
glCullFace(GL_BACK);
glHint(GL_GENERATE_MIPMAP_HINT, GL_NICEST);
}
void rk_render_terminate() {
}
static char rk_infolog[1024];
static void rk_print_shader_infolog(GLuint shader) {
GLsizei length;
glGetShaderInfoLog(shader, sizeof(rk_infolog) - 1, &length, rk_infolog);
if (length > 0) {
rk_gl_printf(rk_infolog);
}
}
static void rk_print_program_infolog(GLuint program) {
GLsizei length;
glGetProgramInfoLog(program, sizeof(rk_infolog) - 1, &length, rk_infolog);
if (length > 0) {
rk_gl_printf(rk_infolog);
}
}
rk_shader_t rk_create_shader(
rk_uint const vert_nlines,
rk_char const * const * vert_lines,
rk_uint const frag_nlines,
rk_char const * const * const frag_lines) {
if (!vert_nlines || !vert_lines || !frag_nlines || !frag_lines) {
rk_printf("rk_load_shader(): invalid params.");
return RK_INVALID_HANDLE;
}
rk_printf("Compiling vertex shader...");
while (glGetError() != GL_NO_ERROR);
GLuint const vert = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vert, vert_nlines, vert_lines, nullptr);
glCompileShader(vert);
GLint vert_success = 0;
glGetShaderiv(vert, GL_COMPILE_STATUS, &vert_success);
if (!vert_success || glGetError() != GL_NO_ERROR) {
rk_print_shader_infolog(vert);
glDeleteShader(vert);
return RK_INVALID_HANDLE;
}
rk_printf("Compiling fragment shader...");
while (glGetError() != GL_NO_ERROR);
GLuint const frag = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(frag, frag_nlines, frag_lines, nullptr);
glCompileShader(frag);
GLint frag_success = 0;
glGetShaderiv(frag, GL_COMPILE_STATUS, &frag_success);
if (!frag_success || glGetError() != GL_NO_ERROR) {
rk_print_shader_infolog(frag);
glDeleteShader(vert);
glDeleteShader(frag);
return RK_INVALID_HANDLE;
}
rk_printf("Linking program...");
while (glGetError() != GL_NO_ERROR);
GLuint prog = glCreateProgram();
glAttachShader(prog, vert);
glAttachShader(prog, frag);
glLinkProgram(prog);
GLint prog_success = 0;
glGetProgramiv(prog, GL_LINK_STATUS, &prog_success);
if (!prog_success || glGetError() != GL_NO_ERROR) {
rk_print_program_infolog(prog);
glDeleteShader(vert);
glDeleteShader(frag);
glDeleteProgram(prog);
return RK_INVALID_HANDLE;
}
rk_printf("Done.");
glReleaseShaderCompiler();
rk_shader * const shader = new rk_shader;
shader->vertex = vert;
shader->fragment = frag;
shader->program = prog;
return reinterpret_cast(shader);
}
rk_input_t rk_resolve_input(
rk_shader_t _shader,
rk_char const * name) {
rk_shader const * const shader = reinterpret_cast(_shader);
if (!shader || !name) {
rk_printf("rk_resolve_input(): invalid params.");
return RK_INVALID_HANDLE;
}
GLint const uniform = glGetUniformLocation(shader->program, name);
if (uniform < 0) {
printf("[RK] rk_resolve_input(): uniform %s not found.\n", name);
}
return reinterpret_cast(uniform + 1);
}
rk_param_t rk_resolve_param(
rk_shader_t _shader,
rk_char const * name) {
rk_shader const * const shader = reinterpret_cast(_shader);
if (!shader || !name) {
rk_printf("rk_resolve_param(): invalid params.");
return RK_INVALID_HANDLE;
}
GLint const location = glGetAttribLocation(shader->program, name);
if (location < 0) {
printf("[RK] rk_resolve_param(): attrib %s not found.\n", name);
}
return reinterpret_cast(location + 1);
}
rk_texture_t rk_create_texture(
rk_texture_format format,
rk_uint width,
rk_uint height,
rk_uint nlevels,
rk_texture_flags flags,
rk_ubyte const * pixels) {
if (!width || !height || !pixels) {
rk_printf("rk_create_texture(): invalid params.");
return RK_INVALID_HANDLE;
}
GLint internal_format;
GLenum source_format;
GLenum source_type;
switch (format) {
case RK_TEXTURE_FORMAT_SRGB8_A8:
internal_format = GL_SRGB8_ALPHA8;
source_format = GL_RGBA;
source_type = GL_UNSIGNED_BYTE;
break;
case RK_TEXTURE_FORMAT_RGBA8:
internal_format = GL_RGBA8;
source_format = GL_RGBA;
source_type = GL_UNSIGNED_BYTE;
break;
case RK_TEXTURE_FORMAT_RGB10_A2:
internal_format = GL_RGB10_A2;
source_format = GL_RGBA;
source_type = GL_UNSIGNED_INT_2_10_10_10_REV;
break;
case RK_TEXTURE_FORMAT_FLOAT_32:
internal_format = GL_R32F;
source_format = GL_RED;
source_type = GL_FLOAT;
break;
default:
rk_printf("rk_create_texture(): invalid texture format.");
return RK_INVALID_HANDLE;
break;
}
rk_texture * const texture = new rk_texture;
glGenTextures(1, &texture->texture);
GLenum target;
if (nlevels) {
if (flags & RK_TEXTURE_FLAG_3D) {
target = GL_TEXTURE_3D;
} else {
target = GL_TEXTURE_2D_ARRAY;
}
glBindTexture(target, texture->texture);
//TODO: glTexStorage3D
glTexImage3D(target, 0, internal_format, width, height, nlevels, 0, source_format, source_type, pixels);
} else {
target = GL_TEXTURE_2D;
glBindTexture(target, texture->texture);
//TODO: glTexStorage2D
glTexImage2D(target, 0, internal_format, width, height, 0, source_format, source_type, pixels);
}
if (flags & RK_TEXTURE_FLAG_MIPMAPS) {
if (flags & RK_TEXTURE_FLAG_MIN_LINEAR) {
glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
} else {
glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_LINEAR);
}
} else {
if (flags & RK_TEXTURE_FLAG_MIN_LINEAR) {
glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
}
if (flags & RK_TEXTURE_FLAG_MAG_LINEAR) {
glTexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
} else {
glTexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
}
glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(target, GL_TEXTURE_WRAP_R, GL_REPEAT);
if (flags & RK_TEXTURE_FLAG_MIPMAPS) {
glGenerateMipmap(target);
}
texture->nlevels = nlevels;
glBindTexture(target, 0);
return reinterpret_cast(texture);
}
rk_triangles_t rk_create_triangles(
rk_uint nvertices,
rk_vec3 const * vertices) {
if (!nvertices || !vertices) {
rk_printf("rk_create_triangles(): invalid params.");
return RK_INVALID_HANDLE;
}
rk_triangles * const triangles = new rk_triangles;
triangles->size = nvertices;
glGenVertexArrays(1, &triangles->array);
glBindVertexArray(triangles->array);
glGenBuffers(1, &triangles->vertices);
glBindBuffer(GL_ARRAY_BUFFER, triangles->vertices);
glBufferData(GL_ARRAY_BUFFER, nvertices * sizeof(rk_vec3), vertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
return reinterpret_cast(triangles);
}
rk_vertices_t rk_create_vertices(
rk_vertex_format const * format,
rk_uint nvertices,
rk_ubyte const * _vertices,
rk_uint nindices,
rk_vertex_index const * indices,
rk_uint nmeshes,
rk_mesh const * meshes) {
if (!format || !nvertices || !_vertices || !nindices || !indices) {
rk_printf("rk_create_vertices(): invalid params.");
return RK_INVALID_HANDLE;
}
unsigned format_size = 0;
unsigned vertex_size = 0;
for (rk_vertex_format const * f = format; *f; ++f, ++format_size) {
switch (*f & RK_VERTEX_FORMAT_MASK) {
case RK_VERTEX_FORMAT_VEC3_FLOAT:
vertex_size += sizeof(rk_vec3_float);
break;
case RK_VERTEX_FORMAT_VEC3_INT10:
vertex_size += sizeof(rk_vec3_int10);
break;
case RK_VERTEX_FORMAT_VEC3_UINT10:
vertex_size += sizeof(rk_vec3_uint10);
break;
default:
rk_printf("rk_create_vertices(): invalid vertex format.");
return RK_INVALID_HANDLE;
break;
}
}
if (!format_size) {
rk_printf("rk_create_vertices(): empty vertex format.");
return RK_INVALID_HANDLE;
}
rk_vertices * const vertices = new rk_vertices;
vertices->nvertices = nvertices;
vertices->nindices = nindices;
vertices->nmeshes = nmeshes;
vertices->format = new rk_vertex_format[format_size + 1];
memcpy(vertices->format, format, (format_size + 1) * sizeof(rk_vertex_format));
vertices->vertices = new rk_ubyte[nvertices * vertex_size];
memcpy(vertices->vertices, _vertices, nvertices * vertex_size);
vertices->indices = new rk_vertex_index[nindices];
memcpy(vertices->indices, indices, nindices * sizeof(rk_vertex_index));
vertices->meshes = new rk_mesh[nmeshes];
memcpy(vertices->meshes, meshes, nmeshes * sizeof(rk_mesh));
vertices->vertices_buffer = 0;
vertices->indices_buffer = 0;
return reinterpret_cast(vertices);
}
static void rk_buckets_alloc(
rk_batch const & batch) {
unsigned const count = batch.vertices->nmeshes;
unsigned const size = batch.max_size;
bool reallocated = false;
if (!rk_nbuckets) {
rk_nbuckets = count;
rk_buckets = reinterpret_cast(malloc(count * sizeof(rk_bucket)));
for (unsigned index = 0; index < count; ++index) {
rk_bucket & bucket = rk_buckets[index];
bucket.size = size;
bucket.indices = reinterpret_cast(malloc(size * sizeof(rk_instance_index)));
}
reallocated = true;
}
else if (count <= rk_nbuckets) {
for (unsigned index = 0; index < count; ++index) {
rk_bucket & bucket = rk_buckets[index];
if (bucket.size < size) {
bucket.size = size;
bucket.indices = reinterpret_cast(
realloc(bucket.indices, size * sizeof(rk_instance_index)));
reallocated = true;
}
}
}
else {
rk_buckets = reinterpret_cast(realloc(rk_buckets, count * sizeof(rk_bucket)));
for (unsigned index = 0; index < rk_nbuckets; ++index) {
rk_bucket & bucket = rk_buckets[index];
if (bucket.size < size) {
bucket.size = size;
bucket.indices = reinterpret_cast(
realloc(bucket.indices, size * sizeof(rk_instance_index)));
}
}
for (unsigned index = rk_nbuckets; index < count; ++index) {
rk_bucket & bucket = rk_buckets[index];
bucket.size = size;
bucket.indices = reinterpret_cast(
malloc(size * sizeof(rk_instance_index)));
}
rk_nbuckets = count;
reallocated = true;
}
if (reallocated) {
unsigned total_size = rk_nbuckets * sizeof(rk_bucket);
for (unsigned index = 0; index < rk_nbuckets; ++index) {
rk_bucket const & bucket = rk_buckets[index];
total_size += bucket.size * sizeof(rk_instance_index);
}
printf("[RK] rk_buckets_alloc() -> %d KiB\n", total_size / 1024);
}
}
static void rk_pack_vec3_float(
unsigned const count,
rk_instance_index const * const __restrict indices,
rk_param_output * __restrict _dst,
rk_param_input const * const __restrict _src) {
rk_instance_index const * const last_index = indices + count;
rk_vec3_float * __restrict dst = reinterpret_cast(_dst);
rk_vec3_float const * const __restrict src = reinterpret_cast(_src);
for (rk_instance_index const * __restrict index = indices; index < last_index; ++index, ++dst) {
*dst = src[*index];
}
}
static void rk_pack_vec3_short(
unsigned const count,
rk_instance_index const * const __restrict indices,
rk_param_output * __restrict _dst,
rk_param_input const * const __restrict _src) {
rk_instance_index const * const last_index = indices + count;
rk_vec3_short * __restrict dst = reinterpret_cast(_dst);
rk_vec3_float const * const __restrict src = reinterpret_cast(_src);
for (rk_instance_index const * __restrict index = indices; index < last_index; ++index, ++dst) {
rk_vec3_float const & input = src[*index];
dst->x = static_cast(input.x);
dst->y = static_cast(input.y);
dst->z = static_cast(input.z);
dst->pad = 0;
}
}
static void rk_pack_vec3_short_norm(
unsigned const count,
rk_instance_index const * const __restrict indices,
rk_param_output * __restrict _dst,
rk_param_input const * const __restrict _src) {
rk_instance_index const * const last_index = indices + count;
rk_vec3_short * __restrict dst = reinterpret_cast(_dst);
rk_vec3_float const * const __restrict src = reinterpret_cast(_src);
#define _convert(s) (static_cast((s) * ((s) < 0.f ? 32768.f : 32767.f)))
for (rk_instance_index const * __restrict index = indices; index < last_index; ++index, ++dst) {
rk_vec3_float const & input = src[*index];
dst->x = _convert(input.x);
dst->y = _convert(input.y);
dst->z = _convert(input.z);
dst->pad = 0;
}
#undef _convert
}
static void rk_pack_vec3_int10(
unsigned const count,
rk_instance_index const * const __restrict indices,
rk_param_output * __restrict _dst,
rk_param_input const * const __restrict _src) {
rk_instance_index const * const last_index = indices + count;
rk_vec3_int10 * __restrict dst = reinterpret_cast(_dst);
rk_vec3_float const * const __restrict src = reinterpret_cast(_src);
#define _convert(s) (static_cast((s)) & 1023)
for (rk_instance_index const * __restrict index = indices; index < last_index; ++index, ++dst) {
rk_vec3_float const & input = src[*index];
*dst = _convert(input.x) | (_convert(input.y) << 10) | (_convert(input.z) << 20);
}
#undef _convert
}
static void rk_pack_vec3_int10_norm(
unsigned const count,
rk_instance_index const * const __restrict indices,
rk_param_output * __restrict _dst,
rk_param_input const * const __restrict _src) {
rk_instance_index const * const last_index = indices + count;
rk_vec3_int10 * __restrict dst = reinterpret_cast(_dst);
rk_vec3_float const * const __restrict src = reinterpret_cast(_src);
#define _convert(s) (static_cast((s) * ((s) < 0.f ? 512.f : 511.f)) & 1023)
for (rk_instance_index const * __restrict index = indices; index < last_index; ++index, ++dst) {
rk_vec3_float const & input = src[*index];
*dst = _convert(input.x) | (_convert(input.y) << 10) | (_convert(input.z) << 20);
}
#undef _convert
}
static void rk_pack_mat3_float(
unsigned const count,
rk_instance_index const * const __restrict indices,
rk_param_output * __restrict _dst,
rk_param_input const * const __restrict _src) {
rk_instance_index const * const last_index = indices + count;
rk_mat3_float * __restrict dst = reinterpret_cast(_dst);
rk_mat3_float const * const __restrict src = reinterpret_cast(_src);
for (rk_instance_index const * __restrict index = indices; index < last_index; ++index, ++dst) {
*dst = src[*index];
}
#undef _convert
}
static void rk_pack_mat3_int10(
unsigned const count,
rk_instance_index const * const __restrict indices,
rk_param_output * __restrict _dst,
rk_param_input const * const __restrict _src) {
rk_instance_index const * const last_index = indices + count;
rk_mat3_int10 * __restrict dst = reinterpret_cast(_dst);
rk_mat3_float const * const __restrict src = reinterpret_cast(_src);
#define _convert(s) (static_cast((s)) & 1023)
for (rk_instance_index const * __restrict index = indices; index < last_index; ++index, ++dst) {
rk_mat3_float const & input = src[*index];
dst->x = _convert(input.x.x) | (_convert(input.x.y) << 10) | (_convert(input.x.z) << 20);
dst->y = _convert(input.y.x) | (_convert(input.y.y) << 10) | (_convert(input.y.z) << 20);
dst->z = _convert(input.z.x) | (_convert(input.z.y) << 10) | (_convert(input.z.z) << 20);
}
#undef _convert
}
static void rk_pack_mat3_int10_norm(
unsigned const count,
rk_instance_index const * const __restrict indices,
rk_param_output * __restrict _dst,
rk_param_input const * const __restrict _src) {
rk_instance_index const * const last_index = indices + count;
rk_mat3_int10 * __restrict dst = reinterpret_cast(_dst);
rk_mat3_float const * const __restrict src = reinterpret_cast(_src);
#define _convert(s) (static_cast((s) * ((s) < 0.f ? 512.f : 511.f)) & 1023)
for (rk_instance_index const * __restrict index = indices; index < last_index; ++index, ++dst) {
rk_mat3_float const & input = src[*index];
dst->x = _convert(input.x.x) | (_convert(input.x.y) << 10) | (_convert(input.x.z) << 20);
dst->y = _convert(input.y.x) | (_convert(input.y.y) << 10) | (_convert(input.y.z) << 20);
dst->z = _convert(input.z.x) | (_convert(input.z.y) << 10) | (_convert(input.z.z) << 20);
}
#undef _convert
}
rk_batch_t rk_create_batch(
rk_vertices_t _vertices,
rk_uint max_size,
rk_param_format const * params_format) {
rk_vertices * const vertices = reinterpret_cast(_vertices);
if (!vertices || !max_size || max_size > RK_BATCH_MAX_SIZE) {
rk_printf("rk_create_batch(): invalid params.");
return RK_INVALID_HANDLE;
}
unsigned vertex_size = 0;
for (rk_vertex_format const * f = vertices->format; *f; ++f) {
switch (*f & RK_VERTEX_FORMAT_MASK) {
case RK_VERTEX_FORMAT_VEC3_FLOAT:
vertex_size += sizeof(rk_vec3_float);
break;
case RK_VERTEX_FORMAT_VEC3_INT10:
vertex_size += sizeof(rk_vec3_int10);
break;
case RK_VERTEX_FORMAT_VEC3_UINT10:
vertex_size += sizeof(rk_vec3_uint10);
break;
}
}
unsigned nparams = 0;
unsigned params_size = 0;
if (params_format) {
for (rk_param_format const * f = params_format; *f; ++f, ++nparams) {
switch (*f & RK_PARAM_FORMAT_MASK) {
case RK_PARAM_FORMAT_VEC3_FLOAT:
params_size += sizeof(rk_vec3_float);
break;
case RK_PARAM_FORMAT_VEC3_SHORT:
params_size += sizeof(rk_vec3_short);
break;
case RK_PARAM_FORMAT_VEC3_INT10:
params_size += sizeof(rk_vec3_int10);
break;
case RK_PARAM_FORMAT_MAT3_FLOAT:
params_size += sizeof(rk_mat3_float);
break;
case RK_PARAM_FORMAT_MAT3_INT10:
params_size += sizeof(rk_mat3_int10);
break;
default:
rk_printf("rk_create_batch(): invalid param format.");
return RK_INVALID_HANDLE;
break;
}
}
}
rk_batch * batch = new rk_batch;
batch->state = RK_BATCH_STATE_EMPTY;
batch->count = 0;
batch->ncommands = 0;
batch->ninstances = 0;
batch->max_size = max_size;
batch->nparams = nparams;
batch->vertices = vertices;
batch->flags = new rk_instance_flags[max_size];
memset(batch->flags, 0xFF, max_size * sizeof(rk_instance_flags));
batch->meshes = new rk_mesh_index[max_size];
memset(batch->meshes, 0xFF, max_size * sizeof(rk_mesh_index));
batch->indices = new rk_instance_index[max_size];
memset(batch->indices, 0, max_size * sizeof(rk_instance_index));
batch->commands = new rk_command[vertices->nmeshes];
memset(batch->commands, 0, vertices->nmeshes * sizeof(rk_command));
if (nparams) {
batch->params = new rk_parameter[nparams];
} else {
batch->params = nullptr;
}
glGenVertexArrays(1, &batch->vertex_array);
glBindVertexArray(batch->vertex_array);
if (!vertices->vertices_buffer) {
glGenBuffers(1, &vertices->vertices_buffer);
glBindBuffer(GL_ARRAY_BUFFER, vertices->vertices_buffer);
glBufferData(GL_ARRAY_BUFFER, vertices->nvertices * vertex_size, vertices->vertices, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
if (vertices->indices_buffer) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vertices->indices_buffer);
} else {
glGenBuffers(1, &vertices->indices_buffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vertices->indices_buffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
vertices->nindices * sizeof(rk_vertex_index), vertices->indices, GL_STATIC_DRAW);
}
if (rk_MultiDrawElementsIndirect) {
glGenBuffers(1, &batch->commands_buffer);
glBindBuffer(GL_DRAW_INDIRECT_BUFFER, batch->commands_buffer);
glBufferData(GL_DRAW_INDIRECT_BUFFER, vertices->nmeshes * sizeof(rk_command), nullptr, GL_DYNAMIC_DRAW);
glBindBuffer(GL_DRAW_INDIRECT_BUFFER, 0);
}
if (nparams) {
glGenBuffers(1, &batch->params_buffer);
glBindBuffer(GL_ARRAY_BUFFER, batch->params_buffer);
glBufferData(GL_ARRAY_BUFFER, max_size * params_size, nullptr, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
unsigned binding = 0;
unsigned attrib = 0;
unsigned offset = 0;
glBindVertexBuffer(binding, vertices->vertices_buffer, 0, vertex_size);
for (rk_vertex_format const * f = vertices->format; *f; ++f) {
GLboolean const norm = (*f & RK_VERTEX_FORMAT_NORMALIZE) != 0;
switch (*f & RK_VERTEX_FORMAT_MASK) {
case RK_VERTEX_FORMAT_VEC3_FLOAT:
glEnableVertexAttribArray(attrib);
glVertexAttribFormat(attrib, 3, GL_FLOAT, GL_FALSE, offset);
glVertexAttribBinding(attrib++, binding);
offset += sizeof(rk_vec3_float);
break;
case RK_VERTEX_FORMAT_VEC3_INT10:
glEnableVertexAttribArray(attrib);
glVertexAttribFormat(attrib, 4, GL_INT_2_10_10_10_REV, norm, offset);
glVertexAttribBinding(attrib++, binding);
offset += sizeof(rk_vec3_int10);
break;
case RK_VERTEX_FORMAT_VEC3_UINT10:
glEnableVertexAttribArray(attrib);
glVertexAttribFormat(attrib, 4, GL_UNSIGNED_INT_2_10_10_10_REV, norm, offset);
glVertexAttribBinding(attrib++, binding);
offset += sizeof(rk_vec3_uint10);
break;
}
}
binding += 1;
if (nparams) {
offset = 0;
rk_parameter * param = batch->params;
for (rk_param_format const * f = params_format; *f; ++f, ++param, ++binding) {
GLboolean const norm = (*f & RK_PARAM_FORMAT_NORMALIZE) != 0;
param->dirty = false;
param->binding = binding;
param->offset = offset;
switch (*f & RK_PARAM_FORMAT_MASK) {
case RK_PARAM_FORMAT_VEC3_FLOAT:
rk_param_get_input_size(param->src_size, param->src_len);
rk_param_get_output_size(param->dst_size, param->dst_len);
param->packer = rk_pack_vec3_float;
glBindVertexBuffer(binding, batch->params_buffer, param->offset, param->dst_size);
glEnableVertexAttribArray(attrib);
glVertexAttribFormat(attrib, 3, GL_FLOAT, GL_FALSE, 0);
glVertexAttribBinding(attrib++, binding);
break;
case RK_PARAM_FORMAT_VEC3_SHORT:
rk_param_get_input_size(param->src_size, param->src_len);
rk_param_get_output_size(param->dst_size, param->dst_len);
param->packer = norm ? rk_pack_vec3_short_norm : rk_pack_vec3_short;
glBindVertexBuffer(binding, batch->params_buffer, param->offset, param->dst_size);
glEnableVertexAttribArray(attrib);
glVertexAttribFormat(attrib, 3, GL_SHORT, norm, 0);
glVertexAttribBinding(attrib++, binding);
break;
case RK_PARAM_FORMAT_VEC3_INT10:
rk_param_get_input_size(param->src_size, param->src_len);
rk_param_get_output_size(param->dst_size, param->dst_len);
param->packer = norm ? rk_pack_vec3_int10_norm : rk_pack_vec3_int10;
glBindVertexBuffer(binding, batch->params_buffer, param->offset, param->dst_size);
glEnableVertexAttribArray(attrib);
glVertexAttribFormat(attrib, 4, GL_INT_2_10_10_10_REV, norm, 0);
glVertexAttribBinding(attrib++, binding);
break;
case RK_PARAM_FORMAT_MAT3_FLOAT:
rk_param_get_input_size(param->src_size, param->src_len);
rk_param_get_output_size(param->dst_size, param->dst_len);
param->packer = rk_pack_mat3_float;
glBindVertexBuffer(binding, batch->params_buffer, param->offset, param->dst_size);
glEnableVertexAttribArray(attrib);
glVertexAttribFormat(attrib, 3, GL_FLOAT, GL_FALSE, offsetof(rk_mat3_float, x));
glVertexAttribBinding(attrib++, binding);
glEnableVertexAttribArray(attrib);
glVertexAttribFormat(attrib, 3, GL_FLOAT, GL_FALSE, offsetof(rk_mat3_float, y));
glVertexAttribBinding(attrib++, binding);
glEnableVertexAttribArray(attrib);
glVertexAttribFormat(attrib, 3, GL_FLOAT, GL_FALSE, offsetof(rk_mat3_float, z));
glVertexAttribBinding(attrib++, binding);
break;
case RK_PARAM_FORMAT_MAT3_INT10:
rk_param_get_input_size(param->src_size, param->src_len);
rk_param_get_output_size(param->dst_size, param->dst_len);
param->packer = norm ? rk_pack_mat3_int10_norm : rk_pack_mat3_int10;
glBindVertexBuffer(binding, batch->params_buffer, param->offset, param->dst_size);
glEnableVertexAttribArray(attrib);
glVertexAttribFormat(attrib, 4, GL_INT_2_10_10_10_REV, norm, offsetof(rk_mat3_int10, x));
glVertexAttribBinding(attrib++, binding);
glEnableVertexAttribArray(attrib);
glVertexAttribFormat(attrib, 4, GL_INT_2_10_10_10_REV, norm, offsetof(rk_mat3_int10, y));
glVertexAttribBinding(attrib++, binding);
glEnableVertexAttribArray(attrib);
glVertexAttribFormat(attrib, 4, GL_INT_2_10_10_10_REV, norm, offsetof(rk_mat3_int10, z));
glVertexAttribBinding(attrib++, binding);
break;
}
glVertexBindingDivisor(binding, 1);
param->source = new rk_param_input[max_size * param->src_len];
memset(param->source, 0xFF, max_size * param->src_size);
offset += max_size * param->dst_size;
}
}
glBindVertexArray(0);
rk_buckets_alloc(*batch);
return reinterpret_cast(batch);
}
static void rk_sort_batch(
rk_batch const & batch) {
rk_bucket const * const last_bucket = rk_buckets + batch.vertices->nmeshes;
for (rk_bucket * __restrict bucket = rk_buckets; bucket < last_bucket; ++bucket) {
bucket->count = 0;
}
rk_instance_flags const * __restrict flags = batch.flags;
rk_mesh_index const * __restrict mesh_index = batch.meshes;
for (unsigned index = 0; index < batch.count; ++index, ++flags, ++mesh_index) {
if ((*flags & RK_INSTANCE_FLAGS_SPAWNED_VISIBLE) == RK_INSTANCE_FLAGS_SPAWNED_VISIBLE) {
rk_bucket & __restrict bucket = rk_buckets[*mesh_index];
bucket.indices[bucket.count++] = index;
}
}
rk_instance_index * __restrict indices = batch.indices;
rk_command * __restrict command = batch.commands;
rk_mesh const * __restrict mesh = batch.vertices->meshes;
for (rk_bucket const * __restrict bucket = rk_buckets; bucket < last_bucket; ++bucket, ++mesh) {
if (bucket->count) {
memcpy(indices, bucket->indices, bucket->count * sizeof(rk_instance_index));
command->nvertices = mesh->ntriangles * 3;
command->ninstances = bucket->count;
command->base_index = mesh->base_index;
command->base_instance = indices - batch.indices;
indices += bucket->count;
++command;
}
}
batch.ninstances = indices - batch.indices;
batch.ncommands = command - batch.commands;
if (rk_MultiDrawElementsIndirect) {
glBufferSubData(GL_DRAW_INDIRECT_BUFFER, 0, batch.ncommands * sizeof(rk_command), batch.commands);
}
batch.state = RK_BATCH_STATE_SORTED;
}
static void rk_pack_batch(
rk_batch const & batch) {
if (batch.nparams) {
glBindBuffer(GL_ARRAY_BUFFER, batch.params_buffer);
for (rk_parameter const * param = batch.params; param < batch.params + batch.nparams; ++param) {
if (param->dirty) {
param->dirty = false;
if (batch.ninstances) {
rk_param_output * const dst = reinterpret_cast(
glMapBufferRange(GL_ARRAY_BUFFER, param->offset, batch.ninstances * param->dst_size,
GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT | GL_MAP_UNSYNCHRONIZED_BIT));
if (dst) {
param->packer(batch.ninstances, batch.indices, dst, param->source);
glUnmapBuffer(GL_ARRAY_BUFFER);
}
}
}
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
batch.state = RK_BATCH_STATE_PACKED;
}
void rk_fill_batch(
rk_batch_t _batch,
rk_uint count,
rk_instance_flags const * flags,
rk_mesh_index const * meshes,
rk_param_input const * const * params) {
rk_batch const * const batch = reinterpret_cast(_batch);
if (!batch || !count || count > batch->max_size) {
rk_printf("rk_fill_batch(): invalid params.");
return;
}
bool got_any_params = false;
bool got_all_params = !batch->nparams;
if (batch->nparams) {
got_all_params = (params != nullptr);
if (params) {
for (rk_param_input const * const * param = params; param < params + batch->nparams; ++param) {
bool const got_param = (*param != nullptr);
got_any_params |= got_param;
got_all_params &= got_param;
}
}
}
bool const is_empty = (batch->state < RK_BATCH_STATE_FILLED);
bool const resized = (count != batch->count);
bool const got_everything = (flags && meshes && got_all_params);
if (is_empty && !got_everything) {
rk_printf("rk_fill_batch(): cannot freeze and empty batch.");
return;
} else if (count > batch->count && !got_everything) {
rk_printf("rk_fill_batch(): cannot grow a frozen batch.");
return;
}
batch->count = count;
bool const cmp_flags = (flags && rk_cmp_memcpy(batch->flags, flags, batch->count));
bool const cmp_meshes = (meshes && rk_cmp_memcpy(batch->meshes, meshes, batch->count));
bool const need_sorting = (cmp_flags || cmp_meshes || resized);
if (batch->nparams) {
rk_parameter const * const last_param = batch->params + batch->nparams;
if (got_any_params) {
rk_param_input const * const * src = params;
for (rk_parameter const * param = batch->params; param < last_param; ++param, ++src) {
param->dirty =
((*src && rk_cmp_memcpy(param->source, *src, batch->count * param->src_len)) || need_sorting);
}
} else if (need_sorting) {
for (rk_parameter const * param = batch->params; param < last_param; ++param) {
param->dirty = true;
}
}
}
if (is_empty) {
glBindVertexArray(batch->vertex_array);
if (rk_MultiDrawElementsIndirect) {
glBindBuffer(GL_DRAW_INDIRECT_BUFFER, batch->commands_buffer);
}
rk_sort_batch(*batch);
rk_pack_batch(*batch);
if (rk_MultiDrawElementsIndirect) {
glBindBuffer(GL_DRAW_INDIRECT_BUFFER, 0);
}
glBindVertexArray(0);
} else if (need_sorting) {
batch->state = RK_BATCH_STATE_FILLED;
} else {
batch->state = RK_BATCH_STATE_SORTED;
}
}
void rk_clear_buffer(
rk_bool pixels,
rk_bool depth,
rk_bool stencil) {
glClear((GL_COLOR_BUFFER_BIT * pixels) | (GL_DEPTH_BUFFER_BIT * depth) | (GL_STENCIL_BUFFER_BIT * stencil));
}
void rk_select_shader(
rk_shader_t _shader) {
rk_shader * const shader = reinterpret_cast(_shader);
if (shader) {
glUseProgram(shader->program);
}
}
void rk_set_input_float(
rk_input_t _input,
float value) {
GLint const input = reinterpret_cast(_input) - 1;
if (input > -1) {
glUniform1f(input, value);
}
}
void rk_set_input_vec3(
rk_input_t _input,
rk_vec3 const & value) {
GLint const input = reinterpret_cast(_input) - 1;
if (input > -1) {
glUniform3fv(input, 1, glm::value_ptr(value));
}
}
void rk_set_input_mat3(
rk_input_t _input,
rk_mat3 const & value) {
GLint const input = reinterpret_cast(_input) - 1;
if (input > -1) {
glUniformMatrix3fv(input, 1, GL_FALSE, glm::value_ptr(value));
}
}
void rk_set_input_mat4(
rk_input_t _input,
rk_mat4 const & value) {
GLint const input = reinterpret_cast(_input) - 1;
if (input > -1) {
glUniformMatrix4fv(input, 1, GL_FALSE, glm::value_ptr(value));
}
}
void rk_set_param_vec3(
rk_param_t _param,
rk_vec3 const & value) {
GLint const param = reinterpret_cast(_param) - 1;
if (param > -1) {
glVertexAttrib3fv(param, glm::value_ptr(value));
}
}
void rk_set_param_mat3(
rk_param_t _param,
rk_mat3 const & value) {
GLint const param = reinterpret_cast(_param) - 1;
if (param > -1) {
glVertexAttrib3fv(param + 0, glm::value_ptr(value[0]));
glVertexAttrib3fv(param + 1, glm::value_ptr(value[1]));
glVertexAttrib3fv(param + 2, glm::value_ptr(value[2]));
}
}
void rk_select_texture(
rk_uint slot,
rk_texture_t _texture) {
rk_texture const * const texture = reinterpret_cast(_texture);
if (texture) {
glActiveTexture(GL_TEXTURE0 + slot);
if (texture->nlevels) {
glBindTexture(GL_TEXTURE_2D_ARRAY, texture->texture);
} else {
glBindTexture(GL_TEXTURE_2D, texture->texture);
}
}
}
RK_EXPORT void rk_draw_triangles(
rk_triangles_t _triangles) {
rk_triangles const * const triangles = reinterpret_cast(_triangles);
if (triangles) {
glBindVertexArray(triangles->array);
glDrawArrays(GL_TRIANGLES, 0, triangles->size);
glBindVertexArray(0);
}
}
void rk_draw_batch(
rk_batch_t _batch) {
rk_batch const * const batch = reinterpret_cast(_batch);
if (!batch) {
rk_printf("rk_draw_batch(): invalid params.");
return;
}
if (batch->state < RK_BATCH_STATE_FILLED) {
rk_printf("rk_draw_batch(): invalid state.");
return;
}
glBindVertexArray(batch->vertex_array);
if (rk_MultiDrawElementsIndirect) {
glBindBuffer(GL_DRAW_INDIRECT_BUFFER, batch->commands_buffer);
}
if (batch->state < RK_BATCH_STATE_SORTED) {
rk_sort_batch(*batch);
}
if (batch->state < RK_BATCH_STATE_PACKED && batch->nparams) {
rk_pack_batch(*batch);
}
if (batch->ncommands) {
if (rk_DrawElementsInstancedBaseInstance) {
if (rk_MultiDrawElementsIndirect) {
rk_MultiDrawElementsIndirect(
GL_TRIANGLES, GL_UNSIGNED_SHORT, nullptr, batch->ncommands, sizeof(rk_command));
} else {
rk_command const * const last_command = batch->commands + batch->ncommands;
for (rk_command const * command = batch->commands; command < last_command; ++command) {
rk_DrawElementsInstancedBaseInstance(
GL_TRIANGLES, command->nvertices, GL_UNSIGNED_SHORT,
reinterpret_cast(command->base_index << 1),
command->ninstances, command->base_instance);
}
}
} else {
rk_command const * const last_command = batch->commands + batch->ncommands;
rk_parameter const * const last_param = batch->params + batch->nparams;
unsigned param_index = 0;
for (rk_command const * command = batch->commands; command < last_command; ++command) {
for (rk_parameter const * param = batch->params; param < last_param; ++param) {
glBindVertexBuffer(param->binding, batch->params_buffer,
param->offset + param_index * param->dst_size, param->dst_size);
}
glDrawElementsInstanced(
GL_TRIANGLES, command->nvertices, GL_UNSIGNED_SHORT,
reinterpret_cast(command->base_index << 1),
command->ninstances);
param_index += command->ninstances;
}
}
}
if (rk_MultiDrawElementsIndirect) {
glBindBuffer(GL_DRAW_INDIRECT_BUFFER, 0);
}
glBindVertexArray(0);
}
void rk_unselect_texture(
rk_uint slot,
rk_texture_t _texture) {
rk_texture const * const texture = reinterpret_cast(_texture);
if (texture) {
glActiveTexture(GL_TEXTURE0 + slot);
if (texture->nlevels) {
glBindTexture(GL_TEXTURE_2D, 0);
} else {
glBindTexture(GL_TEXTURE_2D_ARRAY, 0);
}
}
}
void rk_unselect_shader(
rk_shader_t _shader) {
glUseProgram(0);
}
void rk_destroy_batch(
rk_batch_t _batch) {
rk_batch * const batch = reinterpret_cast(_batch);
if (batch) {
delete[] batch->indices;
delete[] batch->commands;
delete[] batch->flags;
delete[] batch->meshes;
if (rk_MultiDrawElementsIndirect) {
glDeleteBuffers(1, &batch->commands_buffer);
}
if (batch->nparams) {
for (rk_parameter * param = batch->params; param < batch->params + batch->nparams; ++param) {
delete[] param->source;
}
delete[] batch->params;
glDeleteBuffers(1, &batch->params_buffer);
}
glDeleteVertexArrays(1, &batch->vertex_array);
delete batch;
}
}
void rk_destroy_triangles(
rk_triangles_t _triangles) {
rk_triangles * const triangles = reinterpret_cast(_triangles);
if (triangles) {
glDeleteBuffers(1, &triangles->vertices);
glDeleteVertexArrays(1, &triangles->array);
delete triangles;
}
}
void rk_destroy_vertices(
rk_vertices_t _vertices) {
rk_vertices * const vertices = reinterpret_cast(_vertices);
if (vertices) {
delete[] vertices->format;
delete[] vertices->vertices;
delete[] vertices->indices;
if (vertices->vertices_buffer) {
glDeleteBuffers(1, &vertices->vertices_buffer);
}
if (vertices->indices_buffer) {
glDeleteBuffers(1, &vertices->indices_buffer);
}
delete vertices;
}
}
void rk_destroy_texture(
rk_texture_t _texture) {
rk_texture * const texture = reinterpret_cast(_texture);
if (texture) {
glDeleteTextures(1, &texture->texture);
delete texture;
}
}
void rk_destroy_shader(
rk_shader_t _shader) {
rk_shader * const shader = reinterpret_cast(_shader);
if (shader) {
glDeleteShader(shader->vertex);
glDeleteShader(shader->fragment);
glDeleteProgram(shader->program);
delete shader;
}
}